

ENHANCED SHIELDING AND MECHANICAL PROPERTIES OF WHITE CEMENT MORTARS VIA CELESTOBARITE FINE AGGREGATE

Yousra Hayouni¹, Wissem Gallala², Mohamed Essghaier Gaied³, Johann Plank⁴, Mohamed Bourham⁵ & Zeinab Alsmadi⁶*

^{1,3}Research Scholar, Laboratory of Mineral Resources and Environment, Department of Geology, Faculty of Sciences of Tunis, University of Tunis El Manar, 1060 Tunis, Tunisia

¹Research Scholar, Higher Institute of Water Sciences and Techniques, University of Gabes, 6072Gabes, Tunisia

²Research Scholar, Research Unit of Geosystems, Georessources, Geoenvironments, Department of Earth Sciences, Faculty of Sciences of Gabes, University of Gabes, 6072 Gabes, Tunisia

^{2,3}Research Scholar, Higher Institute of Fine Arts, University of Sousse, Station Square, 4000 Sousse, Tunisia

⁴Research Scholar, Construction Chemistry, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Munich, Germany

^{5,6*}Research Scholar, North Carolina State University, Department of Nuclear Engineering, Raleigh, NC 27695-7909, USA

ABSTRACT

This study emphasizes using barite mine wastes as aggregate material in blended mortar as an improved gamma-ray shielding structure in nuclear applications. Mortar mixtures made of white cement were prepared with various percentages of waste ranging from 0-30% as partial replacement of sand. Evaluation of density, flexural and compressive strength, and gamma-ray shielding were conducted. The increase in the percent of the barite wastes aggregates affects the gamma-ray attenuation coefficients. The results testified that the mine waste is appropriate as partial substitute to enhance gamma-ray shielding, ensures sustainability of natural resources and reduces the mortar and concrete costs.

KEYWORDS: Celestobarite Mine Wastes, Fine Aggregate, Gamma-Ray Attenuation, Mortar, Mechanical Strength, Radiation Shielding

Article History

Received: 16 Mar 2021 | Revised: 18 Mar 2021 | Accepted: 25 Mar 2021